Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction
نویسندگان
چکیده
Methylglyoxal (MGO) is a highly reactive metabolite of glucose which is known to cause damage and induce apoptosis in endothelial cells. Endothelial cell damage is implicated in the progression of diabetes-associated complications and atherosclerosis. Hypericin, a naphthodianthrone isolated from Hypericum perforatum L. (St. John's Wort), is a potent and selective inhibitor of protein kinase C and is reported to reduce neuropathic pain. In this work, we investigated the protective effect of hypericin on MGO-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Hypericin showed significant anti-apoptotic activity in MGO-treated HUVECs. Pretreatment with hypericin significantly inhibited MGO-induced changes in cell morphology, cell death, and production of intracellular reactive oxygen species. Hypericin prevented MGO-induced apoptosis in HUVECs by increasing Bcl-2 expression and decreasing Bax expression. MGO was found to activate mitogen-activated protein kinases (MAPKs). Pretreatment with hypericin strongly inhibited the activation of MAPKs, including P38, JNK, and ERK1/2. Interestingly, hypericin also inhibited the formation of AGEs. These findings suggest that hypericin may be an effective regulator of MGO-induced apoptosis. In conclusion, hypericin downregulated the formation of AGEs and ameliorated MGO-induced dysfunction in human endothelial cells.
منابع مشابه
Hypericin-photodynamic therapy induces human umbilical vein endothelial cell apoptosis.
The conventional photosensitizers used in photodynamic therapy (PDT), such as haematoporphyrin (HP), have not yet reached satisfactory therapeutic effects on port-wine stains (PWSs), due largely to the long-term dark toxicity. Previously we have showed that hypericin exhibited potent photocytotoxic effects on Roman chicken cockscomb model of PWSs. However, the molecular mechanism of hypericin-m...
متن کاملPolydatin Prevents Methylglyoxal-Induced Apoptosis through Reducing Oxidative Stress and Improving Mitochondrial Function in Human Umbilical Vein Endothelial Cells
Methylglyoxal (MGO), an active metabolite of glucose, has been reported to induce vascular cell apoptosis in diabetic complication. Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions, such as antioxidative, anti-inflammatory, and nephroprotective properties. However, the protective effects of PD on MGO-induced apoptosis in endothelial cells ...
متن کاملEdaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells
BACKGROUND Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exer...
متن کاملActivation of NF-E2–Related Factor-2 Reverses Biochemical Dysfunction of Endothelial Cells Induced by Hyperglycemia Linked to Vascular Disease
OBJECTIVE Sulforaphane is an activator of transcription factor NF-E2-related factor-2 (nrf2) that regulates gene expression through the promoter antioxidant response element (ARE). Nrf2 regulates the transcription of a battery of protective and metabolic enzymes. The aim of this study was to assess whether activation of nrf2 by sulforaphane in human microvascular endothelial cells prevents meta...
متن کاملBenfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes.
OBJECTIVE Diabetes is characterized by marked postprandial endothelial dysfunction induced by hyperglycemia, hypertriglyceridemia, advanced glycation end products (AGEs), and dicarbonyls (e.g., methylglyoxal [MG]). In vitro hyperglycemia-induced MG formation and endothelial dysfunction could be blocked by benfotiamine, but in vivo effects of benfotiamine on postprandial endothelial dysfunction ...
متن کامل